• Blog Stats

    • 815 hits

Bobina

Principii de bază

La trecerea unui curent electric printr-un conductor se va forma tot timpul un camp magnetic în jurul acestuia. Acest efect poartă numele de electromagnetism. Câmpurile magnetice modifică alinierea electronilor din atomi şi pot duce la apariţia forţelor fizice între atomii, prin spaţiul liber dintre ei, la fel ca în cazulcampurilor electrice ce iau naştere între particulele încărcate electric. Precum câmpurile electrice, cele magnetice pot ocupa spaţiul dintre corpuri şi pot afecta materia la distanţă.

Inerţia electronilor

Pe când un flux electric dintre doi conductori permite acumularea electronilor liberi în cadrul acelor conductori, un flux magnetic permite acumularea unei anumite „inerţii” de deplasare a electronilor prin conductorul ce produce câmpul.

Definiţie

Bobinele sunt componente special concepute, pentru a profita de fenomenul electromagnetismului, sub forma unei înfăşurări de material conductor. Această formă suportă un câmp magnetic mai intens decât cel produs de un simplu fir. Unele înfăşurări ale bobinelor sunt realizate în jurul unui anumit tip de material, denumit miez. Miezul unei bobine poate fi drept, sau poate forma un drum închis (pătrat, rectangular, circular) pentru menţinerea completă a fluxului magnetic. Toate aceste opţiuni de proiectare au efect final asupra performanţelor şi caracteristicilor bobinelor.

Simbolul bobinei

simbolul bobini

Simbolul unei bobine, precum cel al condensatorului, este simplu, reprezentând înfăşurarea conductorului. Deşi o înfăşurare generală este simbolul oricărei bobine, cele cu miez sunt câteodată deosebite de celelalte prin adăugarea a două linii paralele cu axa sa.

Comportamentul şi funcţionarea bobinei în circuit

Curentul electric produce un câmp magnetic concentrat în jurul bobinei, iar acest flux magnetic reprezintă o stocare de energie cinetica datorată deplasării electronilor prin înfăşurare. Cu cât valoarea curentului prin bobină este mai mare, cu atât va fi mai puternic câmpul magnetic şi cu atât mai mare va fi energia stocată de bobină.

Datorită faptului că bobinele stochează energia cinetică a electronilor ce se deplasează prin înfăşurare sub forma câmpului magnetic, comportamentul acestor dispozitive este foarte diferit de cel al rezistorilor (care pur şi simplu disipă energia sub formă de căldură) dintr-un circuit.

Energia stocată dintr-o bobină depinde de cantitatea de curent ce o străbate. Abilitatea unei bobine de a stoca energie în funcţie de curent se traduce printr-o tendinţă de menţinere constantă a curentului ce o străbate. Cu alte cuvinte, bobinele tind să se opună variaţiei curentului. Atunci când valoarea curentului printr-o bobină creşte sau descreşte, aceasta „rezistă” variaţiei producând o tensiune la bornele sale de polaritate opusă variaţiei.

Stocarea şi eliberarea energiei

Pentru a stoca energie într-o bobină, curentul prin aceasta trebuie să crească. Acest lucru înseamnă că şi câmpul magnetic trebuie să crească în forţă, iar această variaţie a forţei câmpului produce la rândul ei o cădere tensiune conform principiului (auto) inductiei electromagnetice. De asemenea, pentru a ceda energia stocată într-o bobină, curentul prin aceasta trebuie să scadă. Acest lucru înseamnă că şi câmpul magnetic trebuie să descrească în forţă, iar această variaţie a câmpului magnetic auto-induce o cădere de tensiune de polaritate opusă.

„Legea de mişcare” a bobinei

Asemenea legii de mişcare a lui Newton („un obiect în mişcare tinde să rămână în mişcare; un obiect în repaos tinde să rămână în repaos”) ce descrie tendinţa corpurilor de a se opune variaţiei vitezei, putem defini tendinţa unei bobine de a se opune variaţiei curentului astfel: „Electronii ce se deplasează printr-o bobină tind să rămână în mişcare; electronii ce se află în repaos într-o bobină tind să rămână în repaos.” Teoretic, o bobină scurt-circuitată va menţine o valoare constantă a curentului la bornele sale fără niciun ajutor extern

Practic însă, abilitatea unei bobine de susţinere individuală a unui curent la bornele sale se poate realiza doar cu ajutorul firelor supraconductoare, deoarece rezistenţa inerentă oricărui conductor normal este suficientă pentru disiparea rapidă a puterii din circuit şi descreşterea curentului, atunci când nu există o sursă de putere în circuit.

Încărcarea bobinei; bobina ca o sarcină

Când curentul printr-o bobină creşte, aceasta va genera o cădere de tensiune în direcţia opusă deplasării electronilor, comportamentul fiind asemenea unei sarcini. În această situaţie, spunem că bobina se încarcă, deoarece energie stocată sub formă de câmp magnetic creşte. Observaţi polaritate tensiuni faţă de direcţia curentului.

Descărcarea bobinei; bobina ca o sursă de putere

Atunci când curentul prin bobină descreşte, căderea de tensiune generată de aceasta este îndreptată spre direcţia de deplasare a electronilor, comportamentul fiind asemenea unei surse de putere. În această situaţie, spunem că bobina se descarcă, deoarece stocul de energie descreşte, fiind eliberată în circuitul extern. Observaţi polaritatea căderii de tensiune faţă de direcţia curentului.

Inductanţa (L)

Măsura capacităţii unei bobine de stocare a energiei pentru o anumită valoare a curentului poartă numele de inductanţă. Inductanţa măsoară şi intensitatea opoziţiei variaţiei de curent (valoarea tensiunii auto-induse pentru o anumită rată de variaţie a curentului). Simbolul acesteia este „L”, iar unitatea de măsură este Henry, prescurtat „H”.

Observaţie

Dacă conectăm bursc o bobină nemagnetizată la o sursă de putere, bobina va rezista iniţial curgeri electronilor prin generarea unei căderi de tensiune egală cu cea a sursei. Pe măsură ce curentul începe să crească, se va crea un câmp magnetic din ce în ce mai puternic ce absoarbe energie de la sursă. Eventual, curentul atinge valoarea maximă şi creşterea sa se opreşte. În acest moment, bobina nu mai absoarbe energie de la sursă, iar căderea de tensiune la bornele sale este minimă (tinde spre zero) (curentul rămâne la valoarea sa maximă).

Pe măsura ce o bobină stochează o cantitate mai mare de energie, curentul prin aceasta creşte, iar căderea de tensiune scade. Observaţi că acest comportament este exact opus comportamentului condensatorului, acolo unde stocarea energiei duce la creşterea căderii de tensiune pe component! Condensatoarele stochează energia prin menţinerea unei tensiuni statice între armăturile sale, iar bobinele stochează energie prin menţinerea unui curent prin înfăşurările lor.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

%d bloggers like this: